
Week 04
Reverse Engineering I

Nathan

Announcements

- Server and auth bot will be up by next Thursday
- Email us if you need UIUC role

- O2F, 3rd Place! 100$!

- Fall recruitment event, need challenges!

- Purdue Oct 16-17
- looking for PWN 2 presenter

sigpwny{plz_no_nsa_backdoor}

Table of Contents

• RE
• What is reverse engineering?
• Compilation
• Executables

• Ghidra

• GDB

What is reverse engineering?

•Given a program, figure out what it does and how it works
• Can we crack programs and write keygens?
• Can we obtain secrets from the program?

• Rocket league decryption key for game assets
• Can we look for a flaw in the logic to find bugs?

•Programs can be written in C/C++, Java, Python …which all require
different strategies to RE
• We will focus on C/C++ programs compiled for Linux

Source code

Compiler
Executable

Compilation

Executable

• Contains machine code (x86, ARM, …) that your processor
understands
• Hard for humans to understand, though!

• Uses registers and a stack, among other things
• Register = 64 bit number (can be a number or a pointer)

• Think of this as a general purpose variable
• Stack = memory you can push and pop (used for function calls)
• Heap = malloc’d memory
• Data segment = memory where global variables are at

https://godbolt.org/

Reverse it!

Ghidra to the rescue!

• Open source disassembler/decompiler
• Transforms executable to disassembly
• Can decompile disassembly to pseudo-C

• Written by the NSA 😳

Ghidra to the rescue!

Ghidra follow along
Open Ghidra!

Dynamic Analysis with GDB

• GDB can debug assembly

• You can show the state of
registers, the stack, and other
memory

• Takes some getting used to!

GDB follow along

Get started:
● View all functions in list on left side of screen. Double click main to decompile main

Decompiler:
● Middle click a variable to highlight all instances in decompilation
● Type “L” to rename variable
● “Ctrl+L” to retype a variable
● Type “;” to add an inline comment on the decompilation and assembly
● Alt+Left Arrow to navigate back to previous function

General:
● Double click an XREF to navigate there
● Search -> For Strings -> Search to find all strings (and XREFs)
● Choose Window -> Function Graph for a graph view of disassembly

GHIDRA CHEAT SHEET

● “b main” - Set a breakpoint on the main function
○ “b *main+10” - Set a breakpoint a couple instructions into main

● “r” - run
○ “r arg1 arg2” - Run program with arg1 and arg2 as command line arguments. Same

as ./prog arg1 arg2
○ “r < myfile” - Run program and supply contents of myfile.txt to stdin

● “c” - continue
● “si” - step instruction (steps into function calls)
● “ni” - next instruction (steps over function calls)
● “x /32xb 0x5555555551b8” - Display 32 hex bytes at address 0x5555555551b8

○ “x /4xg addr” - Display 4 hex “giants” (8 byte numbers) at addr
○ “x /16i $pc” - Display next 16 instructions at $rip
○ “x /s addr” - Display a string at address

● “info registers” - Display registers
● “info file” or “info proc map” - Display memory mappings
● “layout asm” - Get a split screen window to step through assembly

GDB CHEAT SHEET

Go try for yourself!

• Start with re_intro

• All can be solved with Ghidra. (debugger will be very
easy with GDB!)

• Practice practice practice! Ask for help!

https://ctf.sigpwny.com

https://ctf.sigpwny.com

Next Meetings

Weekend Seminar: Reverse Engineering II
- Explore more advanced RE tools + methods
- Explore more complicated obfuscation

Next Thursday: Pwn I
- Go over pwn fundamentals
- How to exploit programs with vulnerabilities

